- 56

Haiku is a simple neural network library for JAX developed by some of the authors of Sonnet, a neural network library for TensorFlow. Documentation on Haiku can be found at https://dm-haiku.readthedocs.io/.

https://dm-haiku.readthedocs.iohttps://github.com/deepmind/dm-haiku

Tags | machine-learning deep-neural-networks deep-learning neural-networks jax |

Implementation | Python |

License | Apache |

Platform | Windows Linux |

Repository for the book Introduction to Artificial Neural Networks and Deep Learning: A Practical Guide with Applications in Python. Deep learning is not just the talk of the town among tech folks. Deep learning allows us to tackle complex problems, training artificial neural networks to recognize complex patterns for image and speech recognition. In this book, we'll continue where we left off in Python Machine Learning and implement deep learning algorithms in PyTorch.

deep-learning neural-network machine-learning tensorflow artificial-intelligence data-science pytorchDeep learning is a group of exciting new technologies for neural networks. Through a combination of advanced training techniques and neural network architectural components, it is now possible to create neural networks of much greater complexity. Deep learning allows a neural network to learn hierarchies of information in a way that is like the function of the human brain. This course will introduce the student to computer vision with Convolution Neural Networks (CNN), time series analysis with Long Short-Term Memory (LSTM), classic neural network structures and application to computer security. High Performance Computing (HPC) aspects will demonstrate how deep learning can be leveraged both on graphical processing units (GPUs), as well as grids. Focus is primarily upon the application of deep learning to problems, with some introduction mathematical foundations. Students will use the Python programming language to implement deep learning using Google TensorFlow and Keras. It is not necessary to know Python prior to this course; however, familiarity of at least one programming language is assumed. This course will be delivered in a hybrid format that includes both classroom and online instruction. This syllabus presents the expected class schedule, due dates, and reading assignments. Download current syllabus.

neural-network machine-learning tensorflow keras deeplearningTrending deep learning Github repositories can be found here. Hint: This will be updated regularly.

deep-learning deep-neural-networks deep-reinforcement-learning convolutional-neural-networks recurrent-neural-networks stargazers-count artificial-neural-networks artificial-intelligence machine-learning top-repositoriesSome examples require MNIST dataset for training and testing. Don't worry, this dataset will automatically be downloaded when running examples (with input_data.py). MNIST is a database of handwritten digits, for a quick description of that dataset, you can check this notebook.

recurrent-neural-networks convolutional-neural-networks deep-learning-tutorial tensorflow tensorlayer keras deep-reinforcement-learning tensorflow-tutorials deep-learning machine-learning notebook autoencoder multi-layer-perceptron reinforcement-learning tflearn neural-networks neural-network neural-machine-translation nlp cnnJraph (pronounced "giraffe") is a lightweight library for working with graph neural networks in jax. It provides a data structure for graphs, a set of utilities for working with graphs, and a 'zoo' of forkable graph neural network models. Jraph is designed to provide utilities for working with graphs in jax, but doesn't prescribe a way to write or develop graph neural networks.

machine-learning deep-learning jax graph-neural-networks"Data is the new oil" is a saying which you must have heard by now along with the huge interest building up around Big Data and Machine Learning in the recent past along with Artificial Intelligence and Deep Learning. Besides this, data scientists have been termed as having "The sexiest job in the 21st Century" which makes it all the more worthwhile to build up some valuable expertise in these areas. Getting started with machine learning in the real world can be overwhelming with the vast amount of resources out there on the web. "Practical Machine Learning with Python" follows a structured and comprehensive three-tiered approach packed with concepts, methodologies, hands-on examples, and code. This book is packed with over 500 pages of useful information which helps its readers master the essential skills needed to recognize and solve complex problems with Machine Learning and Deep Learning by following a data-driven mindset. By using real-world case studies that leverage the popular Python Machine Learning ecosystem, this book is your perfect companion for learning the art and science of Machine Learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute Machine Learning systems and projects successfully.

machine-learning deep-learning text-analytics classification clustering natural-language-processing computer-vision data-science spacy nltk scikit-learn prophet time-series-analysis convolutional-neural-networks tensorflow keras statsmodels pandas deep-neural-networksThis repository contains a topic-wise curated list of Machine Learning and Deep Learning tutorials, articles and other resources. Other awesome lists can be found in this list. If you want to contribute to this list, please read Contributing Guidelines.

deep-learning-tutorial machine-learning machinelearning deeplearning neural-network neural-networks deep-neural-networks awesome-list awesome list deep-learningA generic image detection program that uses Google's Machine Learning library, Tensorflow and a pre-trained Deep Learning Convolutional Neural Network model called Inception. This model has been pre-trained for the ImageNet Large Visual Recognition Challenge using the data from 2012, and it can differentiate between 1,000 different classes, like Dalmatian, dishwasher etc. The program applies Transfer Learning to this existing model and re-trains it to classify a new set of images.

image-detection machine-learning deep-learning deep-neural-networks convolutional-neural-networks tensorflowA comprehensive list of Deep Learning / Artificial Intelligence and Machine Learning tutorials - rapidly expanding into areas of AI/Deep Learning / Machine Vision / NLP and industry specific areas such as Automotives, Retail, Pharma, Medicine, Healthcare by Tarry Singh until at-least 2020 until he finishes his Ph.D. (which might end up being inter-stellar cosmic networks! Who knows! đ)

machine-learning deep-learning tensorflow pytorch keras matplotlib aws kaggle pandas scikit-learn torch artificial-intelligence neural-network convolutional-neural-networks tensorflow-tutorials python-data ipython-notebook capsule-networkKur is a system for quickly building and applying state-of-the-art deep learning models to new and exciting problems. Kur was designed to appeal to the entire machine learning community, from novices to veterans. It uses specification files that are simple to read and author, meaning that you can get started building sophisticated models without ever needing to code. Even so, Kur exposes a friendly and extensible API to support advanced deep learning architectures or workflows.

deep-learning deep-neural-networks speech-recognition deep-learning-tutorial machine-learning neural-networks neural-network image-recognition speech-to-textBender is an abstraction layer over MetalPerformanceShaders useful for working with neural networks. Bender is an abstraction layer over MetalPerformanceShaders which is used to work with neural networks. It is of growing interest in the AI environment to execute neural networks on mobile devices even if the training process has been done previously. We want to make it easier for everyone to execute pretrained networks on iOS.

machine-learning neural-networks metal apple iphone ios convolutional-neural-networks deep-learning deep-neural-networks residual-networksDeepLearning.scala is a simple library for creating complex neural networks from object-oriented and functional programming constructs. Like other deep learning toolkits, DeepLearning.scala allows you to build neural networks from mathematical formulas. It supports floats, doubles, GPU-accelerated N-dimensional arrays, and calculates derivatives of the weights in the formulas.

automatic-differentiation deep-neural-networks deep-learning neural-network functional-programming symbolic-computation dsl domain-specific-language machine-learningWe believe that there exist classic deep learning papers which are worth reading regardless of their application domain. Rather than providing overwhelming amount of papers, We would like to provide a curated list of the awesome deep learning papers which are considered as must-reads in certain research domains. Before this list, there exist other awesome deep learning lists, for example, Deep Vision and Awesome Recurrent Neural Networks. Also, after this list comes out, another awesome list for deep learning beginners, called Deep Learning Papers Reading Roadmap, has been created and loved by many deep learning researchers.

deep-learning deep-neural-networks machine-learningConvNetJS is a Javascript implementation of Neural networks, It currently supports Common Neural Network modules, Classification (SVM/Softmax) and Regression (L2) cost functions, A MagicNet class for fully automatic neural network learning (automatic hyperparameter search and cross-validatations), Ability to specify and train Convolutional Networks that process images, An experimental Reinforcement Learning module, based on Deep Q Learning.

artificial-intelligence neural-networks machine-learning deep-learningBy Yann Bayle (Website, GitHub) from LaBRI (Website, Twitter), Univ. Bordeaux (Website, Twitter), CNRS (Website, Twitter) and SCRIME (Website). The role of this curated list is to gather scientific articles, thesis and reports that use deep learning approaches applied to music. The list is currently under construction but feel free to contribute to the missing fields and to add other resources! To do so, please refer to the How To Contribute section. The resources provided here come from my review of the state-of-the-art for my PhD Thesis for which an article is being written. There are already surveys on deep learning for music generation, speech separation and speaker identification. However, these surveys do not cover music information retrieval tasks that are included in this repository.

awesome awesome-list unicorns list lists resources deeplearning deep-learning deep-neural-networks neural-network neural-networks music music-information-retrieval audio audio-processing article music-genre-classification bib machine-learning researchawesome-very-deep-learning is a curated list for papers and code about implementing and training very deep neural networks. Value Iteration Networks are very deep networks that have tied weights and perform approximate value iteration. They are used as an internal (model-based) planning module.

highway-network deep-learning densenet resnet awesome-list machine-learning vinChainer is a Python-based deep learning framework aiming at flexibility. It provides automatic differentiation APIs based on the define-by-run approach (a.k.a. dynamic computational graphs) as well as object-oriented high-level APIs to build and train neural networks. It also supports CUDA/cuDNN using CuPy for high performance training and inference. For more details of Chainer, see the documents and resources listed above and join the community in Forum, Slack, and Twitter. The stable version of current Chainer is separated in here: v3.

deep-learning neural-networks machine-learning gpu cuda cudnn numpy cupy chainer neural-networkGrenade is a composable, dependently typed, practical, and fast recurrent neural network library for concise and precise specifications of complex networks in Haskell. And that's it. Because the types are so rich, there's no specific term level code required to construct this network; although it is of course possible and easy to construct and deconstruct the networks and layers explicitly oneself.

machine-learning deep-neural-networks haskell deep-learning generative-adversarial-networks convolutional-neural-networksIntel MKL-DNN repository migrated to https://github.com/intel/mkl-dnn. The old address will continue to be available and will redirect to the new repo. Please update your links. Intel(R) Math Kernel Library for Deep Neural Networks (Intel(R) MKL-DNN) is an open source performance library for deep learning applications. The library accelerates deep learning applications and framework on Intel(R) architecture. Intel(R) MKL-DNN contains vectorized and threaded building blocks which you can use to implement deep neural networks (DNN) with C and C++ interfaces.

intel mkl-dnn deep-learning deep-neural-networks cnn rnn lstm c-plus-plus intel-architecture xeon xeon-phi atom core simd sse42 avx2 avx512 avx512-vnni performanceDLL is a library that aims to provide a C++ implementation of Restricted Boltzmann Machine (RBM) and Deep Belief Network (DBN) and their convolution versions as well. It also has support for some more standard neural networks. Note: When you clone the library, you need to clone the sub modules as well, using the --recursive option.

c-plus-plus cpp cpp11 cpp14 performance machine-learning deep-learning artificial-neural-networks gpu rbm cpu convolutional-neural-networks
We have large collection of open source products. Follow the tags from
Tag Cloud >>

Open source products are scattered around the web. Please provide information
about the open source projects you own / you use.
**Add Projects.**